This chapter describes the user interfaces for: 1) a number of NDMaterial models developed for simulating nonlinear, drained/undrained soil response under general 3D cyclic loading conditions, and 2) a number of 2D and 3D solid-fluid fully coupled elements for simulating pore water pressure dissipation/redistribution. Please visit http://cyclic.ucsd.edu/opensees for examples.

This documentation is last updated at 8/5/2005 by Zhaohui Yang (zhyang@ucsd.edu) and Ahmed Elgamal (elgamal@ucsd.edu).

PressureDependMultiYield

PressureDependMultiYield material is an elastic-plastic material for simulating the essential response characteristics of pressure sensitive soil materials under general loading conditions. Such characteristics include dilatancy (shear-induced volume contraction or dilation) and non-flow liquefaction (cyclic mobility), typically exhibited in sands or silts during monotonic or cyclic loading. Please visit http://cyclic.ucsd.edu/opensees for examples.

When this material is employed in regular solid elements (e.g., FourNodeQuad, Brick), it simulates drained soil response. To simulate soil response under fully undrained condition, this material may be either embedded in a FluidSolidPorousMaterial (see below), or used with one of the solid-fluid fully coupled elements (see below) with very low permeability. To simulate partially drained soil response, this material should be used with a solid-fluid fully coupled element with proper permeability values.

During the application of gravity load (and static loads if any), material behavior is linear elastic. In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic (see MATERIAL STAGE UPDATE below). Plasticity is formulated based on the multi-surface (nested surfaces) concept, with a non-associative flow rule to reproduce dilatancy effect. The yield surfaces are of the Drucker-Prager type.

OUTPUT INTERFACE:
The following information may be extracted for this material at a given integration point, using the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain", "backbone", or "tangent".

For 2D problems, the stress output follows this order: \(\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \eta_r\), where \(\eta_r\) is the ratio between the shear (deviatoric) stress and peak shear strength at the current confinement (0<= \(\eta_r\) <=1.0). The strain output follows this order: \(\varepsilon_{xx}, \varepsilon_{yy}, \gamma_{xy}\).
For 3D problems, the stress output follows this order: σ_{xx}, σ_{yy}, σ_{zz}, σ_{xy}, σ_{yz}, σ_{zx}, η, and the strain output follows this order: ε_{xx}, ε_{yy}, ε_{zz}, γ_{xy}, γ_{yz}, γ_{zx}.

The "backbone" option records (secant) shear modulus reduction curves at one or more given confinements. The specific recorder command is as follows:

```
recorder Element -ele $eleNum -file $fName -dT $deltaT material $GaussNum backbone $p1 <$p2 ...>
```

where $p1$, $p2$, ... are the confinements at which modulus reduction curves are recorded. In the output file, corresponding to each given confinement there are two columns: shear strain γ and secant modulus G_s. The number of rows equals the number of yield surfaces.

The octahedral shear stress τ_f is defined as:

$$\tau_f = \sqrt{\frac{1}{2} \left[(\varepsilon_{xx} - \varepsilon_{yy})^2 + (\varepsilon_{yy} - \varepsilon_{zz})^2 + (\varepsilon_{zz} - \varepsilon_{xx})^2 + 6\varepsilon_{xy}^2 + 6\varepsilon_{yz}^2 + 6\varepsilon_{zx}^2 \right]}$$

The octahedral shear strain is defined as:

$$\gamma = \frac{2}{3} \left[(\varepsilon_{xx} - \varepsilon_{yy}) + (\varepsilon_{yy} - \varepsilon_{zz}) + (\varepsilon_{zz} - \varepsilon_{xx}) + 6\varepsilon_{xy}^2 + 6\varepsilon_{yz}^2 + 6\varepsilon_{zx}^2 \right]^{1/2}$$

nDMaterial PressureDependMultiYield

tag nd rho $\text{refShearModul} (\text{Gr})$

$\text{refBulkModul} (\text{Br})$

$\text{frictionAng} (\phi)$

$\text{peakShearStra} (\gamma_{\text{max}})$

refPress pressDependCoe

PTAng contrac dilat1 dilat2 liquefac1 liquefac2 liquefac3

$<$noYieldSurf=20 <$r1 $Gs1 ...$>$ e=0.6 $cs1=0.9$ $cs2=0.02$ $cs3=0.7$ $p_a=101$>
Reference mean effective confining pressure at which G_r, B_r, and γ_{max} are defined.

A positive constant defining variations of G and B as a function of instantaneous effective confinement p':

$$G = G_r \left(\frac{p'}{p'_r} \right)^d \quad B = B_r \left(\frac{p'}{p'_r} \right)^d$$

Phase transformation angle, in degrees.

A non-negative constant defining the rate of shear-induced volume decrease (contraction) or pore pressure buildup. A larger value corresponds to faster contraction rate.

Non-negative constants defining the rate of shear-induced volume increase (dilation). Larger values correspond to stronger dilation rate.

Parameters controlling the mechanism of liquefaction-induced perfectly plastic shear strain accumulation, i.e., cyclic mobility. **Set $\text{liquefac1} = 0$ to deactivate this mechanism altogether.** liquefac1 defines the effective confining pressure (e.g., 10 kPa) below which the mechanism is in effect. Smaller values should be assigned to denser sands. liquefac2 defines the maximum amount of perfectly plastic shear strain developed at zero effective confinement during each loading phase. Smaller values should be assigned to denser sands. liquefac3 defines the maximum amount of biased perfectly plastic shear strain γ_b accumulated at each loading phase under biased shear loading conditions, as $\gamma_b = \text{liquefac2} \times \text{liquefac3}$. Typically, liquefac3 takes a value between 0.0 and 3.0. Smaller values should be assigned to denser sands. See the references listed at the end of this chapter for more information.

Number of yield surfaces, optional (must be less than 40, default is 20). The surfaces are generated based on the hyperbolic relation defined in Note 2 below.

Instead of automatic surfaces generation (Note 2), **you can define yield surfaces directly based on desired shear modulus reduction curve.** To do so, add a minus sign in front of noYieldSurf, then provide noYieldSurf pairs of shear strain (γ) and modulus ratio (G_s) values. For example, to define 10 surfaces:

... $-10 \gamma_1 G_{s1} ... \gamma_{10} G_{s10} ...$

See Note 3 below for some important notes.

Initial void ratio, optional (default is 0.6).

Parameters defining a straight critical-state line e_c in e-ρ' space.

If $cs3=0$,

$$e_c = cs1 - cs2 \log(p'/p_a)$$

else (Li and Wang, JGGE, 124(12)),

$$e_c = cs1 - cs2(p'/p_a)^{cs3}$$

where p_a is atmospheric pressure for normalization (typically 101 kPa in SI units). All four constants are optional (default values: $cs1=0.9$, $cs2=0.02$, $cs3=0.7$, $p_a = 101$).

NOTE:

1. The friction angle ϕ defines the variation of peak (octahedral) shear strength τ_f as a function of current effective confinement p':
Octahedral shear stress is defined as:

\[
\tau = \frac{2\sqrt{2} \sin \phi}{3 - \sin \phi} p'
\]

where \(p' \) is the constant confinement.

2. (Automatic surface generation) At a constant confinement \(p' \), the shear stress \(\tau \) (octahedral) - shear strain \(\gamma \) (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):

\[
\tau = \frac{G \gamma}{1 + \frac{\gamma_r}{\gamma_r(p_r/p')}}
\]

where \(\gamma_r \) satisfies the following equation at \(p' \):

\[
\tau_f = \frac{2\sqrt{2} \sin \phi}{3 - \sin \phi} p' = \frac{G_r \gamma_{\text{max}}}{1 + \gamma_{\text{max}} / \gamma_r}
\]

3. (User defined surfaces) The user specified friction angle \(\phi \) is ignored. Instead, \(\phi \) is defined as follows:

\[
\sin \phi = \frac{3\sqrt{3} \sigma_m / p'}{6 + \sqrt{3} \sigma_m / p'}
\]

where \(\sigma_m \) is the product of the last modulus and strain pair in the modulus reduction curve. Therefore, it is important to adjust the backbone curve so as to render an appropriate \(\phi \). If the resulting \(\phi \) is smaller than the phase transformation angle \(\phi_{PT} \), \(\phi_{PT} \) is set equal to \(\phi \).

Also remember that improper modulus reduction curves can result in strain softening response (negative tangent shear modulus), which is not allowed in the current model formulation. Finally, note that the backbone curve varies with confinement, although the variations are small within commonly interested confinement ranges. Backbone curves at different confinements can be obtained using the OpenSees element recorder facility (see OUTPUT INTERFACE above).

4. The last five optional parameters are needed when critical-state response (flow liquefaction) is anticipated. Upon reaching the critical-state line, material dilatancy is set to zero.

5. SUGGESTED PARAMETER VALUES
For user convenience, a table is provided below as a quick reference for selecting parameter values. However, use of this table should be of great caution, and other information should be incorporated wherever possible.

<table>
<thead>
<tr>
<th></th>
<th>Loose Sand (15%-35%)</th>
<th>Medium Sand (35%-65%)</th>
<th>Medium-dense Sand (65%-85%)</th>
<th>Dense Sand (85%-100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho (ton/m3)</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>refShearModul (kPa, at p'_r=80 kPa)</td>
<td>5.5x104</td>
<td>7.5x104</td>
<td>1.0x105</td>
<td>1.3x105</td>
</tr>
<tr>
<td>refBulkModu (kPa, at p'_r=80 kPa)</td>
<td>1.5x105</td>
<td>2.0x105</td>
<td>3.0x105</td>
<td>3.9x105</td>
</tr>
<tr>
<td>frictionAng</td>
<td>29</td>
<td>33</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>peakShearStra (at p'_r=80 kPa)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>refPress (p'_r, kPa)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>pressDependCoe</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>PTAng</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>contrac</td>
<td>0.21</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>dilat1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>dilat2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>liquefac1 (kPa)</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>liquefac2</td>
<td>0.02</td>
<td>0.01</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>liquefac3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0.85</td>
<td>0.7</td>
<td>0.55</td>
<td>0.45</td>
</tr>
</tbody>
</table>
PressureDependMultiYield02 material is modified from PressureDependMultiYield material, with: 1) additional parameters (contrac3 and dilat3) to account for $K\sigma$ effect, 2) a parameter to account for the influence of previous dilation history on subsequent contraction phase (contrac2), and 3) modified logic related to permanent shear strain accumulation (liquefac1 and liquefac2). Please visit http://cyclic.ucsd.edu/opensees for examples.

```
nDMaterial PressureDependMultiYield02 $tag $nd $rho $refShearModul $refBulkModul $frictionAng $peakShearStra $refPress $pressDependCoe $PTAng $contrac1 $contrac3 $dilat1 $dilat3 <$noYieldSurf=20 <$r1 $Gs1 ...$> $contrac2=5. $dilat2=3. $liquefac1=1. $liquefac2=0. $e=0.6 $cs1=0.9 $cs2=0.02 $cs3=0.7 $pa=101>
```

- **contrac3**: A non-negative constant reflecting $K\sigma$ effect.
- **dilat3**: A non-negative constant reflecting $K\sigma$ effect.
- **contrac2**: A non-negative constant reflecting dilation history on contraction tendency.
- **liquefac1**: Damage parameter to define accumulated permanent shear strain as a function of dilation history. ([Redefined and different from PressureDependMultiYield material](http://cyclic.ucsd.edu/opensees)).
- **liquefac2**: Damage parameter to define biased accumulation of permanent shear strain as a function of load reversal history. ([Redefined and different from PressureDependMultiYield material](http://cyclic.ucsd.edu/opensees)).
- **Others**: See PressureDependMultiYield material above.
NOTE:
The following values are suggested for the model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dr=30%</th>
<th>Dr=40%</th>
<th>Dr=50%</th>
<th>Dr=60%</th>
<th>Dr=75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (ton/m(^3))</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>refShearModul (kPa, at (p'_r = 80) kPa)</td>
<td>(6 \times 10^4)</td>
<td>(9 \times 10^4)</td>
<td>(10 \times 10^4)</td>
<td>(11 \times 10^4)</td>
<td>(13 \times 10^4)</td>
</tr>
<tr>
<td>refBulkModu (kPa, at (p'_r = 80) kPa)</td>
<td>(16 \times 10^4) ((K_0=0.5))</td>
<td>(22 \times 10^4) ((K_0=0.47))</td>
<td>(23.3 \times 10^4) ((K_0=0.45))</td>
<td>(24 \times 10^4) ((K_0=0.43))</td>
<td>(26 \times 10^4) ((K_0=0.4))</td>
</tr>
<tr>
<td>frictionAng</td>
<td>31</td>
<td>32</td>
<td>33.5</td>
<td>35</td>
<td>36.5</td>
</tr>
<tr>
<td>PTAng</td>
<td>31</td>
<td>26</td>
<td>25.5</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>peakShearStr (at (p'_r = 101) kPa)</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>refPress ((p'_r), kPa)</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pressDependCoe</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrac1</td>
<td>0.087</td>
<td>0.067</td>
<td>0.045</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>Contrac3</td>
<td>0.18</td>
<td>0.23</td>
<td>0.15</td>
<td>0.05</td>
<td>0.0</td>
</tr>
<tr>
<td>dilat1</td>
<td>0.0</td>
<td>0.06</td>
<td>0.06</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>dilat3</td>
<td>0.0</td>
<td>0.27</td>
<td>0.15</td>
<td>0.05</td>
<td>0.0</td>
</tr>
<tr>
<td>(e)</td>
<td>0.85</td>
<td>0.77</td>
<td>0.7</td>
<td>0.65</td>
<td>0.55</td>
</tr>
</tbody>
</table>
PressureIndependMultiYield

PressureIndependMultiYield material is an elastic-plastic material in which plasticity exhibits only in the deviatoric stress-strain response. The volumetric stress-strain response is linear-elastic and is independent of the deviatoric response. This material is implemented to simulate monotonic or cyclic response of materials whose shear behavior is insensitive to the confinement change. Such materials include, for example, organic soils or clay under fast (undrained) loading conditions. Please visit http://cyclic.ucsd.edu/opensees for examples.

During the application of gravity load (and static loads if any), material behavior is linear elastic. In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic (see MATERIAL STAGE UPDATE below). Plasticity is formulated based on the multi-surface (nested surfaces) concept, with an associative flow rule. The yield surfaces are of the Von Mises type.

OUTPUT INTERFACE:
The following information may be extracted for this material at a given integration point, using the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain", "backbone", or "tangent".

For 2D problems, the stress output follows this order: σ_{xx}, σ_{yy}, σ_{zz}, σ_{xy}, η_r, where η_r is the ratio between the shear (deviatoric) stress and peak shear strength at the current confinement ($0 \leq \eta_r \leq 1.0$). The strain output follows this order: ε_{xx}, ε_{yy}, γ_{xy}.

For 3D problems, the stress output follows this order: σ_{xx}, σ_{yy}, σ_{zz}, σ_{xy}, σ_{yz}, σ_{zx}, η_r, and the strain output follows this order: ε_{xx}, ε_{yy}, ε_{zz}, γ_{xy}, γ_{yz}, γ_{zx}.

The "backbone" option records (secant) shear modulus reduction curves at one or more given confinements. The specific recorder command is as follows:

```
recorder Element –ele $eleNum -file $fName -dT $deltaT material $GaussNum backbone $p1 <$p2 ...>
```

where $p1$, $p2$, ... are the confinements at which modulus reduction curves are recorded. In the output file, corresponding to each given confinement there are two columns: shear strain γ and secant modulus G_s. The number of rows equals the number of yield surfaces.

```
nDmaterial PressureIndependMultiYield $tag $nd $rho $refShearModul $refBulkModul $cohesi $peakShearStra <$frictionAng=0. $refPress=100. $pressDependCoe=0. $noYieldSurf=20 <$r1 $Gs1 ... >
```

![Diagram](image-url)
A positive integer uniquely identifying the material among all \texttt{nDMaterials}.

Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.

Saturated soil mass density.

Reference low-strain shear modulus, specified at a reference mean effective confining pressure \texttt{refPress} of \(p'_r \) (see below).

Reference bulk modulus, specified at a reference mean effective confining pressure \texttt{refPress} of \(p'_r \) (see below).

Apparent cohesion at zero effective confinement.

An octahedral shear strain at which the maximum shear strength is reached, specified at a reference mean effective confining pressure \texttt{refPress} of \(p'_r \) (see below).

Friction angle at peak shear strength in degrees, optional (default is 0.0).

Reference mean effective confining pressure at which \(G_r, B_r, \) and \(\gamma_{\max} \) are defined, optional (default is 100.).

An optional non-negative constant defining variations of \(G \) and \(B \) as a function of initial effective confinement \(p'_i \) (default is 0.0):

\[
G = G_r \left(\frac{p'_i}{p'_r} \right)^d \\
B = B_r \left(\frac{p'_i}{p'_r} \right)^d
\]

If \(\phi \neq 0 \), \(d \) is reset to 0.0.

Number of yield surfaces, optional (must be less than 40, default is 20). The surfaces are generated based on the hyperbolic relation defined in Note 2 below.

Instead of automatic surfaces generation (Note 2), you can define yield surfaces directly based on desired shear modulus reduction curve. To do so, add a minus sign in front of \texttt{noYieldSurf}, then provide \texttt{noYieldSurf} pairs of shear strain \(\gamma \) and modulus ratio \(G_s \) values. For example, to define 10 surfaces:

\[
... -10 \ \gamma_1 \ G_{s1} ... \ \gamma_{10} \ G_{s10} ...
\]

See Note 3 below for some important notes.

\begin{itemize}
 \item The friction angle \(\phi \) and cohesion \(c \) define the variation of peak (octahedral) shear strength \(\tau_f \) as a function of initial effective confinement \(p'_i \):
 \[
 \tau_f = \frac{2\sqrt{2}}{3 - \sin \phi} \ p'_i + \frac{2\sqrt{2}}{3} \ c
 \]
 \item Automatic surface generation: at a constant confinement \(p' \), the shear stress \(\tau \) (octahedral) - shear strain \(\gamma \) (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):
\end{itemize}
\[\tau = \frac{G\gamma}{1 + \frac{\gamma}{\gamma_r} \left(\frac{p_r'}{p'} \right)^d} \]

where \(\gamma_r \) satisfies the following equation at \(p_r' \):

\[\tau_r = \frac{2\sqrt{2}}{3} \sin \phi \frac{p_r'}{3 - \sin \phi} + \frac{2\sqrt{2}}{3} c = \frac{G\gamma_r \gamma_{max}}{1 + \gamma_{max} / \gamma_r} \]

3. (User defined surfaces) If the user specifies \(\phi = 0 \), cohesion \(c \) will be ignored. Instead, \(c \) is defined by \(c = \sqrt{3} \sigma_m / 2 \), where \(\sigma_m \) is the product of the last modulus and strain pair in the modulus reduction curve. Therefore, it is important to adjust the backbone curve so as to render an appropriate \(c \).

If the user specifies \(\phi > 0 \), this \(\phi \) will be ignored. Instead, \(\phi \) is defined as follows:

\[\sin \phi = \frac{3 (\sqrt{3} \sigma_m - 2c) / p_r'}{6 + (\sqrt{3} \sigma_m - 2c) / p_r'} \]

If the resulting \(\phi < 0 \), we set \(\phi = 0 \) and \(c = \sqrt{3} \sigma_m / 2 \).

Also remember that improper modulus reduction curves can result in strain softening response (negative tangent shear modulus), which is not allowed in the current model formulation. Finally, note that the backbone curve varies with confinement, although the variation is small within commonly interested confinement ranges. Backbone curves at different confinements can be obtained using the OpenSees element recorder facility (see OUTPUT INTERFACE above).
4. **SUGGESTED PARAMETER VALUES**
For user convenience, a table is provided below as a quick reference for selecting parameter values. However, use of this table should be of great caution, and other information should be incorporated wherever possible.

<table>
<thead>
<tr>
<th></th>
<th>Soft Clay</th>
<th>Medium Clay</th>
<th>Stiff Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho (ton/m³)</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>refShearModul (kPa)</td>
<td>1.3x10⁴</td>
<td>6.0x10⁴</td>
<td>1.5x10⁵</td>
</tr>
<tr>
<td>refBulkModu (kPa)</td>
<td>6.5x10⁴</td>
<td>3.0x10⁵</td>
<td>7.5x10⁵</td>
</tr>
<tr>
<td>cohesi (kPa)</td>
<td>18</td>
<td>37</td>
<td>75</td>
</tr>
<tr>
<td>peakShearStra</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>frictionAng</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pressDependCoe</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
updateMaterialStage

This command is used to update a PressureDependMultiYield, PressureDependMultiYield02, PressureIndepMultiYield, or FluidSolidPorous material. To conduct a seismic analysis, two stages should be followed. First, during the application of gravity load (and static loads if any), set material stage to 0, and material behavior is linear elastic (with G_r and B_r as elastic moduli). A FluidSolidPorous material does not contribute to the material response if its stage is set to 0. After the application of gravity load, set material stage to 1 or 2. In case of stage 2, all the elastic material properties are then internally determined at the current effective confinement, and remain constant thereafter. In the subsequent dynamic (fast) loading phase(s), the deviatoric stress-strain response is elastic-plastic (stage 1) or linear-elastic (stage 2), and the volumetric response remains linear-elastic. Please visit http://cyclic.ucsd.edu/opensees for examples.

```
updateMaterialStage -material $tag -stage $sNum
```

$tag

Material number.

$sNum$

desired stage:
0 - linear elastic,
1 – plastic,
2 - Linear elastic, with elasticity constants (shear modulus and bulk modulus) as a function of initial effective confinement.
updateParameter

This command is used to update:

1. Parameters of PressureDependMultiYield or PressureIndependMultiYield material. Currently, two material parameters, reference low-strain shear modulus G, and reference bulk modulus B, can be modified during an analysis.

2. Permeability parameters of solid-fluid fully coupled elements including FourNodeQuadUP, Nine_Four_Node_QuadUP, BrickUP, and Twenty_Eight_Node_BrickUP.

Please visit http://cyclic.ucsd.edu/opensees for examples.

```bash
updateParameter -material $tag -refG $newVal
updateParameter -material $tag -refB $newVal
updateParameter -element $tag -hPerm $newVal
updateParameter -element $tag -vPerm $newVal
```

$tag
Material/element number.

$newVal
New parameter value.
FluidSolidPorousMaterial

FluidSolidPorousMaterial couples the responses of two phases: fluid and solid. The fluid phase response is only volumetric and linear elastic. The solid phase can be any NDMaterial. This material is developed to simulate the response of saturated porous media under fully undrained condition. Please visit http://cyclic.ucsd.edu/opensees for examples.

OUTPUT INTERFACE:
The following information may be extracted for this material at given integration point, using the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain", "tangent", or "pressure". The "pressure" option records excess pore pressure and excess pore pressure ratio at a given material integration point.

```plaintext
nDMaterial FluidSolidPorousMaterial $tag $nd $soilMatTag $combinedBulkModul

- **$tag**
  A positive integer uniquely identifying the material among all nDMaterials.

- **$nd**
  Number of dimensions, 2 for plane-strain, and 3 for general 3D analysis.

- **$soilMatTag**
  The material number for the solid phase material (previously defined).

- **$combinedBulkModul**
  Combined undrained bulk modulus $B_c$ relating changes in pore pressure and volumetric strain, may be approximated by:
  
  $$B_c \approx \frac{B_f}{n}$$

  where $B_f$ is the bulk modulus of fluid phase (2.2x10^6 kPa for water typically), and $n$ the initial porosity.

**NOTE:**
1. Buoyant unit weight (total unit weight - fluid unit weight) should be used in definition of the finite elements composed of a **FluidSolidPorousMaterial**.
2. During the application of gravity (elastic) load, the fluid phase does not contribute to the material response.
**FourNodeQuadUP**

*FourNodeQuadUP* is a four-node plane-strain element using bilinear isoparametric formulation. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot's theory of porous medium. Each element node has 3 degrees-of-freedom (DOF): DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p). Please visit [http://cyclic.ucsd.edu/opensees](http://cyclic.ucsd.edu/opensees) for examples.

**OUTPUT INTERFACE:**
Pore pressure can be recorded at an element node using OpenSees Node Recorder:

```
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...) -dof 3 vel
```

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.

The valid queries to a quadUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material *matNum matArg1 matArg2 ...*', where *matNum* represents the material object at the corresponding integration point.

```
element quadUP $eleTag $iNode $jNode $kNode $lNode $thick $matTag
 $bulk $fmass $hPerm $vPerm <$b1=0 $b2=0 $t=0>
```

- **$eleTag** A positive integer uniquely identifying the element among all *elements*
- **$iNode, $jNode, $kNode, $lNode** Four element node (previously defined) numbers in counter-clockwise order around the element
- **$thick** Element thickness
- **$matTag** Tag of an NDMaterial object (previously defined) of which the element is composed
- **$bulk** Combined undrained bulk modulus $B_c$ relating changes in pore pressure and volumetric strain, may be approximated by:
  
  $B_c \approx B_f / n$

  where $B_f$ is the bulk modulus of fluid phase (2.2x10^6 kPa for water), and $n$ the initial porosity.
- **$fmass** Fluid mass density
- **$hPerm** Permeability coefficient in horizontal direction
- **$vPerm** Permeability coefficient in vertical direction
- **$b1, $b2** Optional gravity acceleration components in horizontal and vertical directions respectively (defaults are 0.0)
- **$t** Optional uniform element normal traction, positive in tension (default is 0.0)

**TYPICAL RANGE OF PERMEABILITY COEFFICIENT (cm/s)**

<table>
<thead>
<tr>
<th>Material</th>
<th>Gravel</th>
<th>Sand</th>
<th>Silty Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$&gt;1.0x10^{-1}$</td>
<td>$1.0x10^{-3} \sim 1.0x10^{-1}$</td>
<td>$1.0x10^{-5} \sim 1.0x10^{-3}$</td>
<td>$1.0x10^{-7} \sim 1.0x10^{-5}$</td>
<td>$&lt;1.0x10^{-7}$</td>
</tr>
</tbody>
</table>
Nine_Four_Node_QuadUP

Nine_Four_Node_QuadUP is a 9-node quadrilateral plane-strain element. The four corner nodes have 3 degrees-of-freedom (DOF) each: DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p). The other five nodes have 2 DOFs each for solid displacement. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot’s theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees for examples.

OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder:

```bash
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 …)> -dof 3 vel
```

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.

The valid queries to a Nine_Four_Node_QuadUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material matNum matArg1 matArg2 ...', where matNum represents the material object at the corresponding integration point.

```
element 9_4_QuadUP $eleTag $Node1 $Node2 $Node3 $Node4 $Node5 $Node6 $Node7 $Node8 $Node9 $thick $matTag $bulk $fmass $hPerm $vPerm <$b1=0 $b2=0>
```

- **$eleTag**: A positive integer uniquely identifying the element among all elements.
- **$Node1,… $Node9**: Nine element node (previously defined) numbers (see figure above for order of numbering).
- **$thick**: Element thickness.
- **$matTag**: Tag of an NDMaterial object (previously defined) of which the element is composed.
- **$bulk**: Combined undrained bulk modulus $B_c$ relating changes in pore pressure and volumetric strain, may be approximated by:

$$B_c \approx \frac{B_f}{n}$$

where $B_f$ is the bulk modulus of fluid phase (2.2x10^6 kPa for water), and $n$ the initial porosity.
- **$fmass**: Fluid mass density.
- **$hPerm, $vPerm**: Permeability coefficient in horizontal and vertical directions respectively.
- **$b1, $b2**: Optional gravity acceleration components in horizontal and vertical directions respectively (defaults are 0.0)
BrickUP

BrickUP is an 8-node hexahedral linear isoparametric element. Each node has 4 degrees-of-freedom (DOF): DOFs 1 to 3 for solid displacement (u) and DOF 4 for fluid pressure (p). This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees for examples.

OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder:

```
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...) -dof 3 vel
```

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.

The valid queries to a BrickUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material matNum matArg1 matArg2 ...', where matNum represents the material object at the corresponding integration point.

```
element brickUP $eleTag $Node1 $Node2 $Node3 $Node4 $Node5 $Node6 $Node7 $Node8 $matTag $bulk $fmass $PermX $PermY $PermZ <$bX=0 $bY=0 $bZ=0>
```

$eleTag A positive integer uniquely identifying the element among all elements

$Node1,... $Node8 Eight element node (previously defined) numbers (see figure above for order of numbering).

$matTag Tag of an NDMaterial object (previously defined) of which the element is composed

$bulk Combined undrained bulk modulus $B_c$ relating changes in pore pressure and volumetric strain, may be approximated by:

$$B_c \approx \frac{B_f}{\phi}$$

where $B_f$ is the bulk modulus of fluid phase (2.2x10^6 kPa for water), and $n$ the initial porosity.

$fmass Fluid mass density

$permX, $permY, $permZ Permeability coefficients in x, y, and z directions respectively.

$bX, bY, bZ$ Optional gravity acceleration components in x, y, and z directions respectively (defaults are 0.0)
Twenty_Eight_Node_BrickUP

Twenty_Eight_Node_BrickUP is a 20-node hexahedral isoparametric element. The eight corner nodes have 4 degrees-of-freedom (DOF) each: DOFs 1 to 3 for solid displacement (u) and DOF 4 for fluid pressure (p). The other nodes have 3 DOFs each for solid displacement. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees for examples.

OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder:

```
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 …)> -dof 3 vel
```

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.

The valid queries to a Twenty_Eight_Node_BrickUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material matNum matArg1 matArg2 …', where `matNum` represents the material object at the corresponding integration point.

```
element 20_8_BrickUP $eleTag $Node1 … $Node20 $matTag $bulk $fmass $PermX $PermY $PermZ <$bX=0 $bY=0 $bZ=0>
```

- `$eleTag` A positive integer uniquely identifying the element among all elements
- `$Node1,…$Node20` 20 element node (previously defined) numbers (see figure above for order of numbering).
- `$matTag` Tag of an NDMaterial object (previously defined) of which the element is composed
- `$bulk` Combined undrained bulk modulus $B_c$ relating changes in pore pressure and volumetric strain, may be approximated by:
  \[ B_c \approx \frac{B_f}{n} \]
  where $B_f$ is the bulk modulus of fluid phase (2.2x10^6 kPa for water), and $n$ the initial porosity.
- `$fmass` Fluid mass density
- `$PermX`, `$PermY`, `$PermZ` Permeability coefficients in x, y, and z directions respectively.
Optional gravity acceleration components in x, y, and z directions respectively (defaults are 0.0)

References


